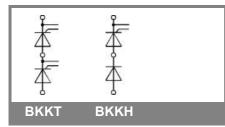
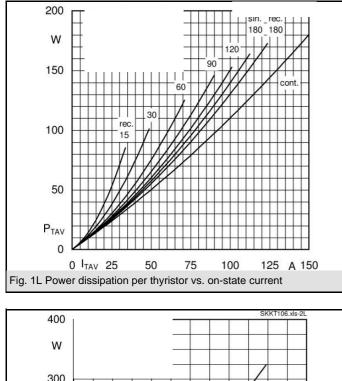
BKKT 106, BKKT 106B, BKKH 106

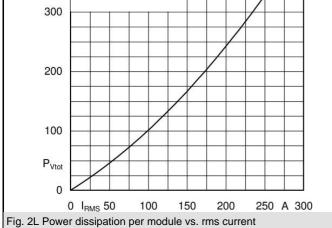
Thyristor / Diode Modules

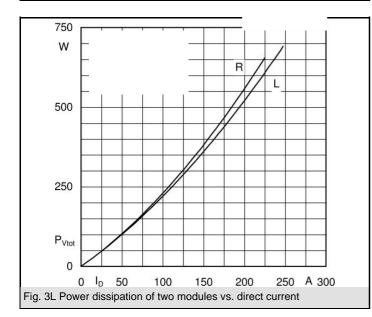
вккт	106
вккт	106B
вккн	106

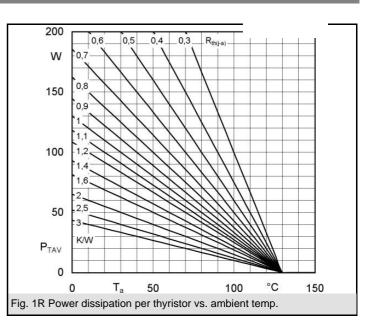
Features

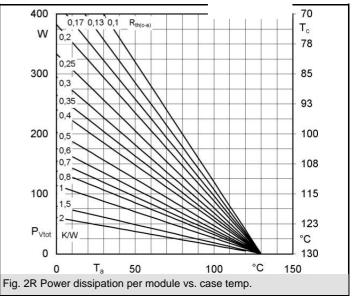

- Heat transfer through aluminium oxide ceramic isolated metal baseplate
- Hard soldered joints for high reliability
- UL recognized, file no. E 63 532

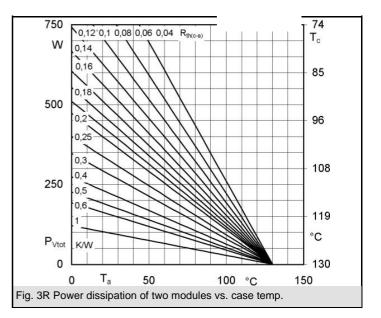

Typical Applications*

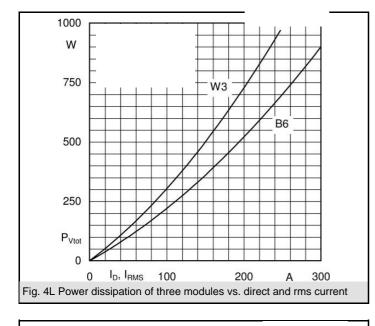

- DC motor control
 (e. g. for machine tools)
- AC motor soft starters
- Temperature control (e. g. for ovens, chemical processes)
- Professional light dimming (studios, theaters)
- 1) See the assembly instructions

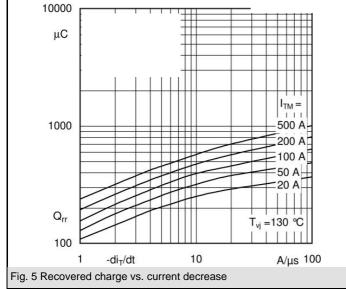

V _{RSM}	V _{RRM} , V _{DRM}	I _{TRMS} = 180 A (maximum value for continuous operation)		
V	V	I _{TAV} = 106 A (sin. 180; T _c = 85 °C)		
900	800	BKKT 106/08E	BKKT 106B08E	BKKH 106/08E
1300	1200	BKKT 106/12E	BKKT 106B12E	BKKH 106/12E
1500	1400	BKKT 106/14E	BKKT 106B14E	BKKH 106/14E
1700	1600	BKKT 106/16E	BKKT 106B16E	BKKH 106/16E
1900	1800	BKKT 106/18E	BKKT 106B18E	BKKH 106/18E

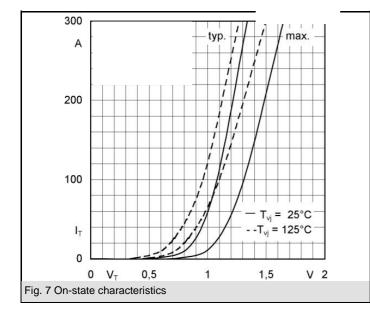

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 85 (100) °C;	106 (78)	А
I _D	P3/180F; T _a = 35 °C; B2 / B6	145 / 180	А
	P16/200F; T _a = 35 °C; B2 / B6	190 /260	А
I _{RMS}	P3/180F; T _a = 35 °C; W1 / W3	200 / 3 * 140	А
I _{TSM}	T _{vi} = 25 °C; 10 ms	2250	А
	T _{vi} = 130 °C; 10 ms	1900	А
i²t	T _{vj} = 25 °C; 8,3 10 ms	25000	A²s
	T _{vj} = 130 °C; 8,3 10 ms	18000	A²s
V _T	T _{vi} = 25 °C; I _T = 300 A	max. 1,65	V
V _{T(TO)}	$T_{vi} = 130 \text{ °C}$	max. 0,9	V
r _T	T _{vi} = 130 °C	max. 2	mΩ
I _{DD} ; I _{RD}	$T_{vj} = 130 \text{ °C}; V_{RD} = V_{RRM}; V_{DD} = V_{DRM}$	max. 20	mA
t _{gd}	T _{vj} = 25 °C; I _G = 1 A; di _G /dt = 1 A/μs	1	μs
t _{gr}	$V_{\rm D} = 0.67 * V_{\rm DRM}$	2	μs
(di/dt) _{cr}	T _{vi} = 130 °C	max. 150	A/µs
(dv/dt) _{cr}	$T_{vi} = 130 \ ^{\circ}C$	max. 1000	V/µs
t _q	T _{vi} = 130 °C ,	100	μs
I _H	T _{vj} = 25 °C; typ. / max.	150 / 250	mA
I _L	T_{vj} = 25 °C; R _G = 33 Ω; typ. / max.	300 / 600	mA
V _{GT}	T _{vi} = 25 °C; d.c.	min. 3	V
I _{GT}	T _{vi} = 25 °C; d.c.	min. 150	mA
V _{GD}	$T_{vj} = 130 \text{ °C; d.c.}$	max. 0,25	V
I _{GD}	T _{vj} = 130 °C; d.c.	max. 6	mA
R _{th(j-c)}	cont.; per thyristor / per module	0,28 / 0,14	K/W
R _{th(j-c)}	sin. 180; per thyristor / per module	0,3 / 0,15	K/W
R _{th(j-c)}	rec. 120; per thyristor / per module	0,32 / 0,16	K/W
R _{th(c-s)}	per thyristor / per module	0,2 / 0,1	K/W
T _{vj}		- 40 + 130	°C
T _{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 / 3000	V~
M _s	to heatsink	5 ± 15 % ¹⁾	Nm
M _t	to terminal	3 ± 15 %	Nm
а		5 * 9,81	m/s²
m	approx.	95	g
Case	вккт	A 46	
	ВККТВ	A 48	
	вккн	A 47	



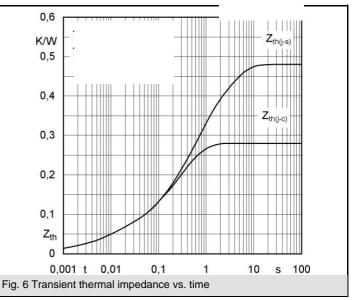


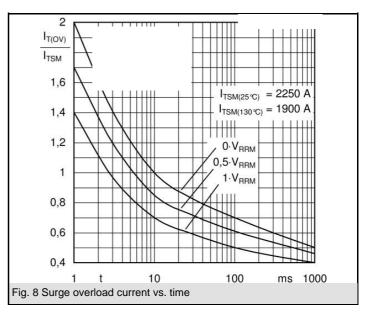


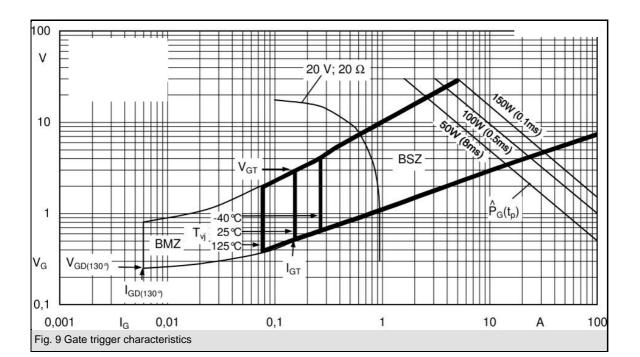


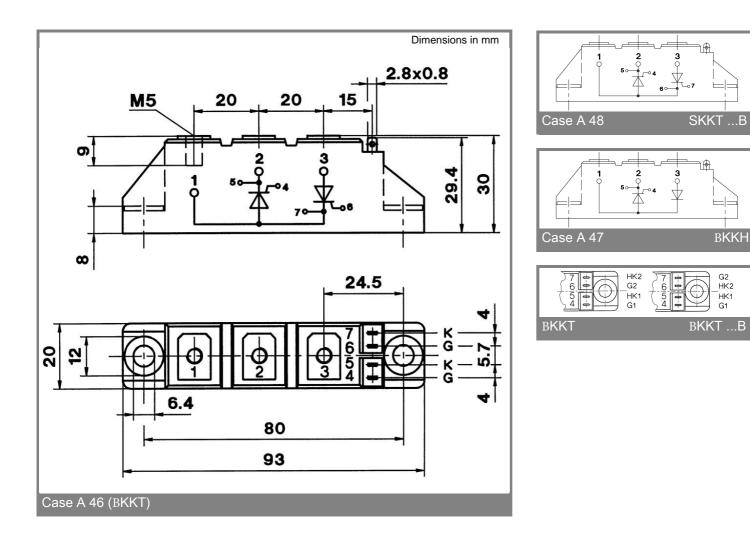





BKKT 106, SKKT 106B, BKKH 106







* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of BILTEC products in life support appliances and systems is subject to prior specification and written approval by BILTEC. We therefore strongly recommend prior consultation of our personal.