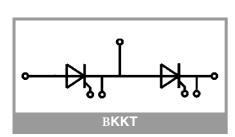
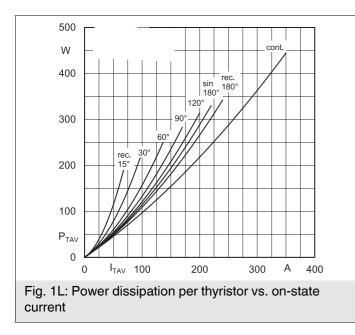


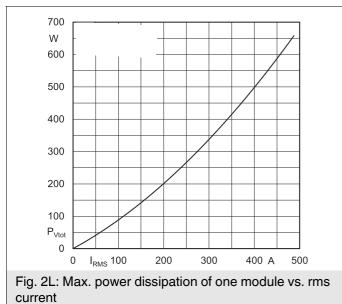
Thyristor Modules

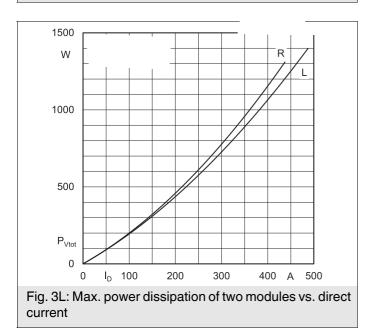

BKKT 215/18 E

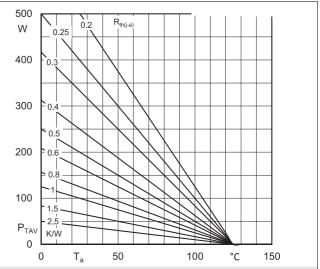
Features

- Heat transfer through aluminium oxide ceramic insulated metal baseplate
- Hard soldered joints for high reliability
- UL recognized, file no. E63532

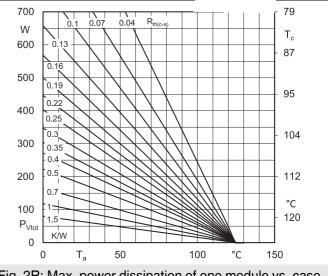

Typical Applications*


- DC motor control (e. g. for machine tools)
- AC motor soft starters
- Temperature control (e. g. for ovens, chemical processes)
- Professional light dimming (studios, theaters)




Absolute	Maximum Rating	s			
Symbol	Conditions		Values	Unit	
Chip					
I _{T(AV)}	sinus 180°	T _c = 85 °C	215	Α	
		T _c = 100 °C	153	А	
I _{TSM}	10 ms	T _j = 25 °C	7000	А	
		T _j = 125 °C	5700	A	
i ² t	- 10 ms	T _j = 25 °C	245000	A²s	
		T _j = 125 °C	162450	A²s	
V _{RSM}			1900	V	
V _{RRM}			1800	V	
V _{DRM}			1800	V	
(di/dt) _{cr}	T _j = 125 °C		200		
(dv/dt) _{cr}	T _j = 125 °C		1000		
Tj	-		-40 125		
Module	<u>.</u>			·	
T _{stg}			-40 125	°C	
V _{isol}	a.c.; 50 Hz; r.m.s.	1 min	3000	V	
		1 s	3600	V	

Characte	eristics					
Symbol	Conditions	min.	typ.	max.	Unit	
Chip						
V _T	$T_j = 25 \ ^{\circ}C, I_T =$			1.5	V	
V _{T(TO)}	T _j = 125 °C			0.85	V	
r _T	T _j = 125 °C			1.2	mΩ	
I _{DD} ;I _{RD}	T _j = 125 °C, V _D			60	mA	
t _{gd}	$T_j = 25 \ ^{\circ}C, I_G =$		1		μs	
t _{gr}	$V_{D} = 0.67 * V_{DRM}$			2		μs
tq	T _j = 125 °C			150		μs
Ι _Η	T _j = 25 °C			150	400	mA
ΙL	$T_j = 25 \ ^{\circ}C, R_G = 33 \ \Omega$			300	1000	mA
V _{GT}	$T_{j} = 25 ^{\circ}C, d.c.$		2			V
I _{GT}	$T_{j} = 25 \ ^{\circ}C, \ d.c.$		150			mA
V_{GD}	T _j = 125 °C, d.c.				0.25	V
I _{GD}	T _j = 125 °C, d.c.				10	mA
R _{th(j-c)}	- cont.	per chip			0.12	K/W
		per module			0.06	K/W
R _{th(j-c)}	– sin. 180°	per chip			0.125	K/W
		per module			0.065	K/W
R _{th(j-c)}	– rec. 120°	per chip			0.14	K/W
		per module			0.07	K/W
Module						
R _{th(c-s)}	chip			0.04		K/W
	module			0.027		K/W
Ms	to heatsink M5		4.25		5.75	Nm
Mt	to terminals Me	6	4.25		5.75	Nm
а					5 * 9.81	m/s²
W				165		g



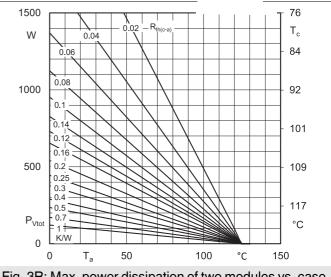
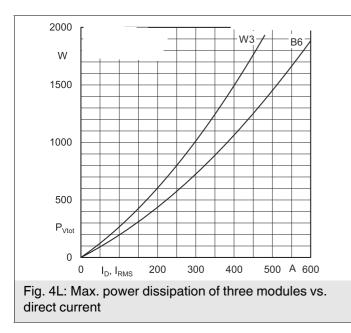
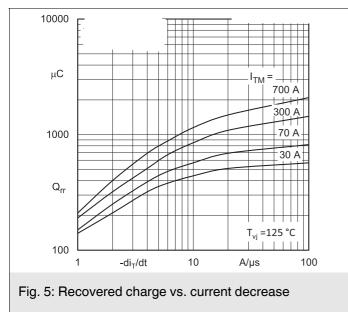
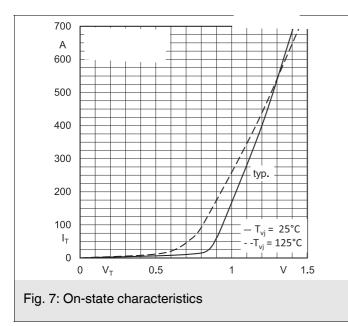
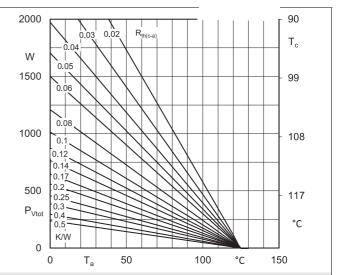
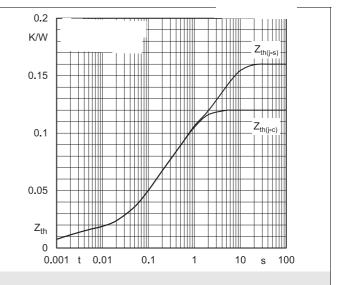
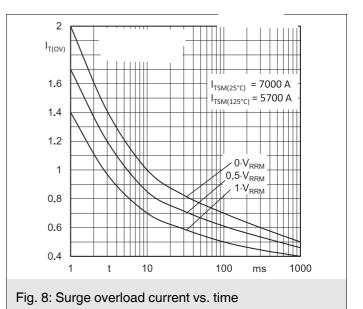
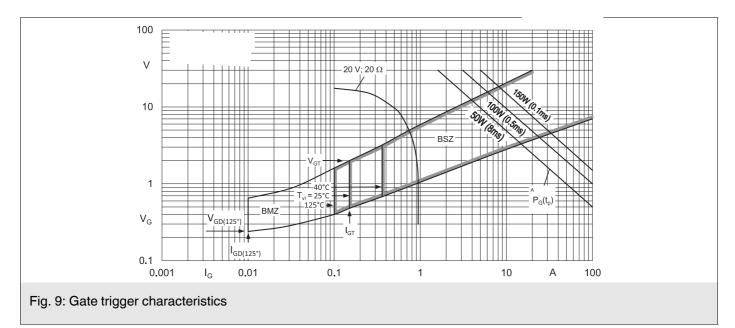
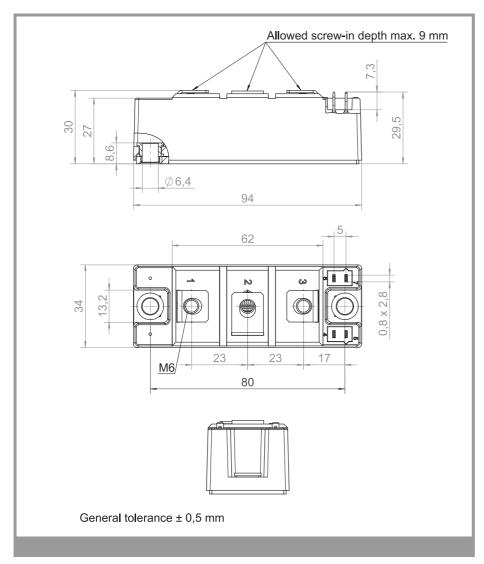
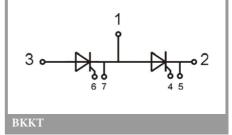






Fig. 3R: Max. power dissipation of two modules vs. case temperature


Fig. 6: Transient thermal impedance vs. time

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, chapter IX.

***IMPORTANT INFORMATION AND WARNINGS**

The specifications of BILTEC products may not be considered as guarantee or assurance of product characteristics ("Beschaffenheitsgarantie"). The specifications of BILTEC products describe only the usual characteristics of products to be expected in

typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective application in advance. Application adjustments may be necessary. The user of BILTEC products is responsible for the safety of their applications embedding BILTEC products and must take adequate safety measures to prevent the applications from causing a physical injury, fire or other problem if any of BILTEC products become faulty. The user is responsible to make sure that the application design is compliant with all applicable laws, regulations, norms and standards. Except as otherwise explicitly approved by BILTEC in a written document signed by authorized representatives of BILTEC products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation, warranties of non-infringement of intellectual property rights of any third party. BILTEC does not assume any liability arising out of the applications or use of any product; neither does it convey any license under its patent rights, copyrights, trade secrets or other intellectual property rights, nor the rights of others. BILTEC makes no representation or warranty of non-infringement or alleged non-infringement of intellectual property rights. Due to technical requirements our products may contain dangerous substances. For information on the types in question please contact the nearest BILTEC reserves the right to make changes.